ESR Study of Electron Transfer to Oxygen Adsorbed on Supported Catalysts Containing Molybdenum and Vanadium

O. V. KRYLOV, G. B. PARIISKII, AND K. N. SPIRIDONOV

Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow, USSR

Received June 17, 1970; revised May 18, 1971

Paramagnetic species which appeared upon low-temperature adsorption of oxygen on the surface of partially reduced Mo/MgO, V/MgO, Mo/Al₂O₃, and V/Al₂O₃ catalysts were studied. The results show that on chemisorption a transfer of electron from the supported atoms to molecules O₂ take place and that the appearing O₂⁻ species are stabilized on the ions of host lattices or on supported ions depending upon the temperature of the experiments.

Study of complex formation at the surface of transition metal solid oxides, specifically that accompanied with charge transfer, lead to certain hypotheses on the mechanism of redox reactions catalyzed by these oxides (1). It is often believed that redox reactions involve two metal atoms at the crystal surface. Either these atoms change their valence in the course of adsorption, or there occurs electron transfer through the catalyst crystalline lattice.

Adsorption on transition metal ions in low concentrations, supported by an inert matrix, seemed to be most convenient for investigation of electron transfer on an individual atom, since it ruled out charge transfer through the oxide lattice. Mo and V ions on MgO and γ -Al₂O₃ were chosen for such investigation.

Complex signals exhibited by transition metal ions in different valence and coordination states were observed earlier in ESR spectra of partially reduced Mo/MgO, V/MgO, Mo/Al₂O₃ and V/Al_2O_3 samples (2-4). For instance, a spectrum of Mo⁵⁺ ions from the molybdenum bulk and signals from at least two forms of surface molybdenum (3) are exhibited by the Mo/MgO sample; the V/MgO sample shows V²⁺, VO^{2+} , V⁴⁺ signals, a part of vanadium ions being stabilized as pairs (VO²⁺...V⁵⁺) (4). Certain other forms of transition metal ions are seemingly not observed by the ESR technique.

This investigation concerns oxygen adsorption on MgO and γ -Al₂O₃ with Mo and V ions.

EXPERIMENTAL METHODS

Samples of MgO and γ -Al₂O₃ were prepared from hydroxides precipitated with ammonia from nitrates, with subsequent decomposition at 500°C in air, and sintering at 1000-1100°C in air for 1-2 hr. The surfaces obtained appeared to be 57 and 55 m^2/g , respectively. The V and Mo ions were deposited by impregnation of the adsorbents with aqueous solutions of ammonia salts. The samples were dried at 80–90°C and sintered in air at 550–600°C. The concentration of V⁵⁺ ions calculated for the initial surface was $(1 \div 10) 10^{13}$ ions/cm² and that of Mo⁶⁺ was $(0.1 \div$ 10) 10¹³ ions/cm². Thermovacuum treatment of the samples was carried out for 4 to 12 hr at 500–520°C and $P < 10^{-5}$ Torr. Then a part of the samples was reduced with hydrogen at the same temperature and $P_{\rm H} = 50$ Torr, and the samples were degassed for 1 hr. The ESR spectra were obtained at 77°K using the EPR-2M spectrometer with $\lambda = 3.2$ cm. Fast cooling

© 1971 by Academic Press, Inc.

was ensured by introducing He at P = 40Torr. Oxygen was adsorbed from dry air, or else electrolytic O₂ was used. The hydrogen used was electrolytic. The *g*-factors were determined relative to the HFS components of Mn²⁺ impurity ions or to the F-center signals in quartz.

RESULTS AND DISCUSSION

Adsorption of oxygen on Mo/MgO and Mo/Al₂O₃ at 25°C results in the appearance of anisotropic ESR signals with $g_1 = 2.070$; $g_2 = 2.009$; $g_3 = 2.001$; and $g_{\parallel} = 2.035$; $g_{\perp} = 2.009$ for MgO and Al₂O₃, respectively (Fig. 1). The signal intensity increases with the concentration of Mo ions and with degree of reduction of samples. After adsorption of oxygen the surface Mo⁵⁺ signal intensity essentially increases for both catalyst. This seems to be accounted for either by predominant oxidation of low-valence Mo ions to Mo⁵⁺ or by interaction of O₂ with paired M⁵⁺ . . . Mo⁵⁺ ions.

A similar anisotropic signal with $g_1 = 2.070$; $g_2 = 2.009$; and $g_3 = 2.001$; as well as weaker anisotropic lines with $g_{\parallel} = 2.080$ and $g_{\perp} = 2.009$, are observed for V/MgO under the same conditions. The species exhibiting these signals are stable up to 150°C both supports. Heating of the samples to a temperature over 150°C results in disappearance of the oxygen signal and in weakening of the surface molybdenum signals.

The parameters of the signal appearing upon adsorption of oxygen on V/MgO and Mo/MgO virtually coincide with those of the O_2^- radical anion obtained by Lunsford and Jayne (5) for samples of pure magnesium oxide irradiated with X-rays. A signal from adsorbed O_2^- radical ions resembling that from Mo/Al₂O₃ obtained here was observed earlier upon adsorption of O_2 on Al₂O₃ under ⁶⁰Co irradiation (θ).

It was assumed from the value of the g-factor anisotropy (5, 6) that O_2^- stabilized on 2- and 3-charged cations of MgO and Al₂O₃ respectively, since $\Delta_g = g_{\parallel} - g_e$ for O_2^- must decrease linearly with the relevant cation charge (7, 8). This leads to the conclusion that the signals appearing upon adsorption of oxygen on V/MgO, Mo/MgO, and Mo/Al₂O₃ at 25°C are due to the O₂⁻ radical ions on Mg²⁺ and Al³⁺. (With V/Al₂O₃ a decrease in the V(IV) signal was only observed under these conditions, and no new lines appeared.)

The regularity observed in (7, 8) was observed both for adsorption of oxygen on individual oxides (4, 5, 9) and for supported cations of a charge close to or the same as that of the support cations (10, 11), and it cannot be said a priori whether this regularity will hold for adsorption of

FIG. 1. Adsorption of O_2 on Mo/MgO, V/MgO, and Mo/Al₂O₈ at 25°C: spectra of O_2^- on: Mo/MgO (a); V/MgO (b); and Mo/Al₂O₈ (c).

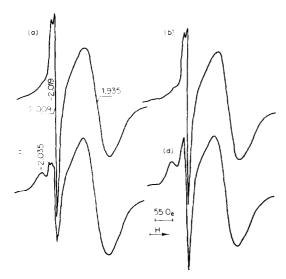


FIG. 2. Adsorption of O_2 on Mo/Al₂O₃: initial spectrum of O_2^- adsorbed at 77°K (a); spectrum of the same sample after heating in vacuum up to 25°C (b); after heating in air up to 25°C (c); heating in O₂ to 100°C.

 O_2 on all supported systems. It might fail in the case of impurity ions of a valence essentially different from that of the lattice ion, due to the effect of the support field.

2.019 and $g_{\perp} = 2.008$ are exhibited by M_0/Al_2O_3 (the same but considerably weaker signals were observed at room temperature) and signals with $g_{\parallel} = 2.035$ and $g_{\perp} = 2.009$ were absent. The g-factor anisotropy for these signals is that of the $O_2^$ radical ion on a cation of a +5 or +6charge. A similar signal was obtained (13) for adsorption of O₂ at 25°C on Mo/SiO₂ and Mo/Al_2O_3 samples at a considerable surface coverage with Mo ions (at a 5 to 10 wt % of molybdenum). This form of adsorbed oxygen is stable in He up to 100°C. However, on admission of oxygen at 25°C the signal intensity decreases and there appears a new line with $g_{\parallel} = 2.035$ and $g_{\perp} = 2.009$ due to the radical anion O_2^- on Al³⁺ (Fig. 2c). The narrow signal disappears only after heating of the sample in oxygen to 100°C. The intensity of the molybdenum surface ion signals remains unchanged. It seems that at room temperature O₂⁻ stabilized on Mo⁶⁺ is capable of transferring its electron to the adsorbed neutral oxygen molecule that becomes stabilized on Al^{3+} in the form of O_2^{-} . A possible scheme of this process is:

$$\begin{array}{c} O_{2}^{-} \\ -M_{0}^{-6^{+}} - O - AI^{3^{+}} - \underbrace{O_{2}}_{+25^{\circ}C} O_{2}^{-} \\ -M_{0}^{-6^{+}} - O - AI^{3^{+}} - \underbrace{O_{2}}_{+25^{\circ}C} O_{2}^{-} \\ -M_{0}^{-6^{+}} - O - AI^{3^{+}} - \underbrace{O_{2}}_{+25^{\circ}C} O_{2}^{-} \\ -M_{0}^{-6^{+}} - O - AI^{-3^{+}} - \underbrace{O_{2}}_{+25^{\circ}C} O_{2}^{-} \\ -M_{0}^{-6^{+}} - O - AI^{-3^{+}} - \underbrace{O_{2}}_{+25^{\circ}C} O_{2}^{-} \\ -M_{0}^{-6^{+}} - O - AI^{-3^{+}} - \underbrace{O_{2}}_{+25^{\circ}C} O_{2}^{-} \\ -M_{0}^{-6^{+}} - O - AI^{-3^{+}} - \underbrace{O_{2}}_{+25^{\circ}C} O_{2}^{-} \\ -M_{0}^{-6^{+}} - O - AI^{-3^{+}} - \underbrace{O_{2}}_{+25^{\circ}C} O_{2}^{-} \\ -M_{0}^{-6^{+}} - O - AI^{-3^{+}} - \underbrace{O_{2}}_{+25^{\circ}C} O_{2}^{-} \\ -M_{0}^{-6^{+}} - O - AI^{-3^{+}} - \underbrace{O_{2}}_{+25^{\circ}C} O_{2}^{-} \\ -M_{0}^{-6^{+}} - O - AI^{-3^{+}} - \underbrace{O_{2}}_{+25^{\circ}C} O_{2}^{-} \\ -M_{0}^{-6^{+}} - O - AI^{-3^{+}} - \underbrace{O_{2}}_{+25^{\circ}C} O_{2}^{-} \\ -M_{0}^{-6^{+}} - O - AI^{-3^{+}} - \underbrace{O_{2}}_{+25^{\circ}C} O_{2}^{-} \\ -M_{0}^{-6^{+}} - O - AI^{-3^{+}} - \underbrace{O_{2}}_{+25^{\circ}C} O_{2}^{-} \\ -M_{0}^{-6^{+}} - O - AI^{-6^{+}} - O - AI^{-6^{+}} \\ -M_{0}^{-6^{+}} - O - AI^{-6^{+}} - O - AI^{-6^{+}} \\ -M_{0}^{-6^{+}} - O - AI^{-6^{+}} - O - AI^{-6^{+}} \\ -M_{0}^{-6^{+}} - O - AI^{-6^{+}} - O - AI^{-6^{+}} \\ -M_{0}^{-6^{+}} - O - AI^{-6^{+}} - O - AI^{-6^{+}} - O - AI^{-6^{+}} \\ -M_{0}^{-6^{+}} - O - AI^{-6^{+}} - O - AI^{-6^{+}} \\ -M_{0}^{-6^{+}} - O - AI^{-6^{+}} - O - AI^{-6^{+}} - O - AI^{-6^{+}} \\ -M_{0}^{-6^{+}} - O - AI^{-6^{+}} - O - AI^{-6^{+}} - O - AI^{-6^{+}} \\ -M_{0}^{-6^{+}} - O - AI^{-6^{+}} - O - AI^{-6^{+}}$$

For instance, Lunsford and Jayne (5) ascribes the small change in the g-factor anisotropy of the O_2^- radical ion when passing from ZnO to MgO to the effect of the support field. From this standpoint the results in (10, 11) are not characteristic in view of the close charges of supported ions and of the lattice cations. However, the regularity holds for adsorption of O_2 on zeolites with cations of different valences (7, 12).

The possibility of determining the site of O_2^- stabilization on the cation of host lattice or on an impurity ion from the *g*-factor anisotropy was found in investigating adsorption at 77°K. Under these conditions (Fig. 2a) signals with $g_{\parallel} =$

Things are considerably more complicated with adsorption of O2 on V/MgO and Mo/MgO at 77°K. It results in appearance of a signal form O₂⁻ on Mg²⁺ (Fig. 3), its intensity is considerably higher than with adsorption of O_2 at 25°C. The lines with $g_{\parallel}=2.080$ and $g_{\parallel}=2.090$ also are considerably more intensive (oxygen stabilized on different facets of the MgO crystal might be responsible for these lines). There is an additional complex anisotropic signal from oxygen with $g_1 = 2.026$, $g_2 = 2.009$, and $g_3 = 2.003$ (Fig. 4), no HFS from ⁵¹V nuclei being observed. Admission of H₂ at 77°K brings no change in the spectrum. Adsorbed radical ions O⁻ rapidly disappear at 77°K in the presence of oxygen (14).

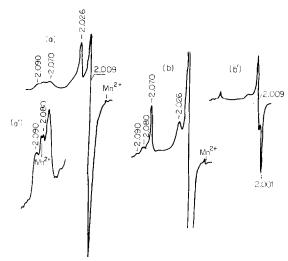


FIG. 3. Adsorption of O_2 on Mo/MgO and V/MgO at 77°K: O_2^- on Mo/MgO (b); scale enlarged for the g_1 region (b'); O_2^- on V/MgO (a); scale enlarged for the g_1 region (a').

Thus, all signals observed upon oxygen adsorption seem to be due to various forms of O_2^- .

However, the g-factor anisotropy for a signal with $g_{\parallel} = 2.026$ cannot be used for location of the stabilization site, it can

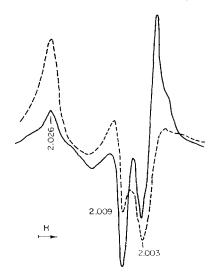


FIG. 4. Signal from the unstable form of O_2^- on Mo/MgO and V/MgO was obtained by substracting the spectra observed after heating in vacuum to 25°C the samples with adsorbed oxygen from the spectra in Fig. 3a and b. (---) V/MgO; (..) Mo/MgO.

only be stated that this radical ion does not stabilize on Mg^{2+} . At the same time this radical seems to be connected with the donor ion, since heating of samples in vacuum to room temperature leads to disappearance of adsorbed oxygen which is responsible for this line and, in the case of Mo/MgO, to restoration of the signal from Mo(V) surface ions. Maybe the bonding with the donor ion is not direct here, but is realized through the lattice oxygen. A pair of impurity ions (Mo or V) might represent the adsorption center too, and then the HFS from ⁵¹V nuclei can be absent in the case of V/MgO. The possibility of O_2 adsorption on paired centers has not been treated theoretically and it is not clear at present what will be the HF splitting accounted for by interaction of O₂⁻ with two ⁵¹V nuclei.

Note that the O_2^-/Mg^{2+} signal intensity also decreases upon heating to room temperature, i.e., a part of O_2^- adsorbed at 77°K might stabilize on Mg^{2+} close to the supported ions. Consequently, distortion of the lattice would weaken the $O_2^--Mg^{2+}$ bond and heating would result in desorption of oxygen from these centers with reduction of Mo (or V) ions to +5 (+4).

In this way, electron transfer with adsorption of oxygen on MgO might occur with participation of lattice ions adjacent to the adsorbed one.

The Al₂O₃ adsorption of O₂ at 77°K results in lesser intensity of V(IV) signals and in appearance of a weak signal with $g_{\parallel} = 2.024$ and $a_{\perp} = 2.008$ that superposes on one of the HFS components of V(IV) ions (Fig. 5). On heating to room temperature in vacuum, this signal disappears and the initial V(IV) signal intensity is not restored, probably due to dissociation of oxygen yielding nonparamagnetic species. Since the parameters of this signal are close to those of the "narrow" signal from oxygen on V/MgO, their nature may be the same.

Thus, adsorption of O_2 on Mo/MgO, Mo/Al₂O₃, V/MgO at room temperature results in formation of O_2^- radical anions stabilized on the support lattice cations. It was found for Mo/Al₂O₃ that at 77°K

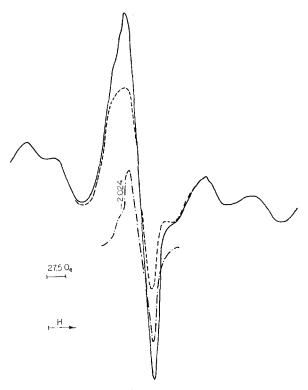


FIG. 5. Adsorption of O_2 on V/Al_2O_3 at 77°K: (—) summary spectrum of V(IV) ions and O_2^- ; (..) sample after heating to 25°C; (— ·) to the result of subtracting the latter from the former.

oxygen is adsorbed in the form of $O_2^$ bonded with the supported ions. This form is stable up to 100°C in an inert medium such as He, and converts to the form $O_2^$ on Al³⁺ in an oxygen medium.

Low-temperature adsorption of oxygen on Mo/MgO and V/MgO results in stabilization on O_2 on the support lattice ions. It follows from thermal stability of this species that a part of radical anions $O_2^$ are desorbed by heating in the form of O_2 and restore the amount of initial donor ions. It is suggested that the desorbing O₂⁻ is that bonded with Mg²⁺ ions adjacent to donor ions. Complex anisotropic signals (Fig. 3) stable at low temperature only were observed for both systems, along with the above-mentioned signals. These might be due to O_2^- stabilized either on oxygen lattice ions adjacent to the supported donor ions or on the donor ions as such. It is not clear whether this form is an intermediate in the formation of O_2^- stabilized on Mg²⁺.

Adsorption of oxygen on V/Al_2O_8 both at 77°K and at room temperature does not result in formation of O_2^- stabilized on the support lattice cations, but only in oxidation of donor ions.

The results obtained are evidence of electron transfer from supported donor ions to molecules of oxygen adsorbed on the support. This process might be due to migration of electrons over adsorbed oxygen molecules and/or to participation of the support lattice ions.

References

- 1. KRYLOV, O. V., Problemy Kinet. Katal. 13, 141 (1968).
- SPIRIDONOV, K. N., PARIISKII, G. B., AND KRY-LOV, O. V., Izv. Akad. Nauk SSSR, Ser. Khim., in press.
- SPIRIDONOV, K. N., PARIISKII, G. B., AND KRY-LOV, O. V., Izv. Akad. Nauk SSSR, Ser. Khim., 11, 2646 (1970).
- SPIRIDONOV, K. N., PARIISKII, G. B., AND KRY-LOV, O. V., Kinet. Katal., in press.

- LUNSFORD, J. H., AND JAYNE, J. P., J. Chem. Phys. 44, 1487 (1966).
- GEZALOV, A. A., ZHABROVA, G. M., NIKISHA, V. V., PARIISKII, G. B., AND SPIRIDONOV, K. N., Kinet. Katal. 9, 462, 1968.
- 7. KASAI, P. H., J. Chem. Phys. 43, 3322 (1965).
- MIKHEIKIN, I. D., MASHCHENKO, A. I., AND KAZANSKII, V. B., Kinet. Katal. 8, 1363 (1967).
- VAN HOOF, J. H. C., AND VAN HELDEN, J. F., J. Catal. 8, 199 (1967).

- 10. Shvets, V. A., Sarychev, M. E., and Kazanskii, V. B., J. Catal. 11, 378 (1968).
- TARANAO, K., YOSHIDA, S., ISHIDA, S., AND DOI, Y., Bull. Chem. Soc. Jap. 42, 1161 (1969).
- WANG, K. M., AND LUNSFORD, J. H., J. Phys. Chem. 74, 1514 (1970).
- DUFUX, M., Thesis, Lyon, Institute de Catalyse, CNRS, 1968.
- 14. SHVETS, V. A., VOROTYNTSEV, V. M., AND KAZANSKII, V. B., Kinet. Katal. 10, 356 (1969).